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The analysis of linear oscillating systenfs with variable pa-

rameters, and particularly of such with parameters that reimain periodical in

time, is of fundamental importance for the investigation of odcillating systems in

a general form []. The parameters of nonlinear oscillating lsystems depend on

the voltage applied and on the currents that flow through them, and these, in

their tunr, are functions of time. Thus, in the long run, norflinear systems are

also systems with variable parameters. In this connection al princiPle of linear'

linkage is formulated in mathematics [2]. lt is related to thq idea that the phe-

nomena and properties of norrlinear systems can be realized (i{r the sense of simu-

lated) for each specific (particular) case in the respective linelr systems with vari-

able parameters.

Qualitative analysis assumes considerable importarise in the investiga-
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tion of complex oscillating systems, since it allows of ide{rtifying the mcsl
eral features of system behaviour.

The paper reveals a general method for analyzing linlar systems with

eral features of system behaviour.

odic and almost periodic parameters.

fying the mcst

i an oscillating

The generalized linear (Fig. l) with feriodic paramet
called so forth to pnay an the theory of nonlinear oscilla
and in radiophysics. Its d s that it is useb in radiophysicr
signal oscillating circuit parametric amplifier or generato{, in the proclss of
cillation modulation in generator systems, etc. Its indirecd significance is conrn ggneraror systems, etc. l$ lndlrect slgnlltcance ls c
tioned by the fact that it is a heuristic model of nonlinear dutino,rous and
autonomous second-order systems employed in the analy$is of process stabil
in such systems. ]

from the point of view of their bounded or unbounded natJr.
it studies issues of the stability and instability of the oscillati

spective of the task makes it interesting from a practical pfint of view, sirrcJt
parametric oscillating circuit is quite rich in particular c{ses, but principle
specific particular case can reveal the overall diversity of flossibilites for the
cillating circuit.

equations can be classified within a definite sett of classes bv zones of stabili
and instability. These zones can be presented in a two-dirqensional plane as
eas with sutficiently complex tbrm which intertwine and

space obtained by rotating the plane round an axis lying fn this plane. The
spective results are obtained by employing incomparably {

cal concepts.

The paper provides an analysis of the free processes ir.l an oscillating
m the point of view of their bounded or unbounded natdr.e. or, in other
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Structure of the differential equatiohs

describing linear oscillating systeins
with positive parameters 

i

i

Linear oscillating circuits qan be described by applying a

(l)

first-order vector linear differential equatron

/l
at=A(t)z+f(t),dt

where z is a tditnensional vector, whose elements can represe4t capacitor charges,

magnetic flux rurnning through inductances, etc. A(t ) is a zj x n -dirneusional
matrix whose elements can be expressed by circuit paranretefs (inductances, ca-
pacitances, resistances), f(r) is a free *dirnensiornal vector, iwhose components
are determined by the electrornotive forces connected to thei circuit and by the
parameters of the system. I

I

In order to identify the structure of equation (l), we shall fnitially analyze the
following equation of the free processes with "frozen" (timje-independent) pa-

d:x=Ax"
dt

I

wlrere,4 = const. If all the parameters of the system are positi{e, the solution will
satisfy the condition: lim x(t) = g . 

I

It is obvious that the Iattffiuation meets the condition that iSp,4<0, (Sp,4 is the

sunr total of the main diagonal tenns of matrix A). 
i

L e m m a l. Any radiophysical system with constpt positive param-
eters, containing active resistances with currents flowing thjrough them, is de-
scribed by a system of differential equations with constant boefficients, whose
matrix includes non-positive main diagoreal elements, at lelst one of which is
negative. 

i

L e m m a 2. The main diagonal in the matrix of tlje first-order vector
differential equation of a radio circuit with constant positivie parameters, con-
taining only real reactances (with losses), consists only of nepative elements.

The condition that Sp,4<0 and the following Lemma ale valid for circuits
made up of ideal reactances with constant positive parameters. 

I

L e m m a 3. The matrix of the vector differential equatjon of a radio circuit
containing only ideal reactances with constant positive parame{ers has a zero nrain

rameters:

(2)

diagonal.
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The Lemmas formulated abov
linear radio circuits (we shall term it a s
positive parameters. They are character
tains no derivatives of the circuit para
lowing theorem can be formulated in t

Theorem l. Any radio circuit
capacitive loops or inductive nodes are

The proof of Theorem I is bas
that the derivatives of the circuit para
after excluding one ofthe charges in a
fluxes in an inductirre node.

With a view to extending the sco
ally stationary circuits considered above, the latter can be {-eformulated as sep!-
rate theorems.

Two connected oscillating circu
serve as an example off a structurally st
ing circuits with external capacitive co
ally stationary circuit, since in this case
loop. 

,

equation de$cribing
circuit with
rameters

fr* = A(t)x,

x= colon (*r,*r),*, =* - normalized charge of the c{nacitor, 
", =#-

The free
with changing parameters (Fig.
tion

(3)

*q
normalized magnetic flux of the induct ance, A(t) = lnr!)\, i, j = I,i,

arr(t) = -6ffi.0 ,ar,(t)= qmro,
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c(0

R(t)

-1,
q0 4.t)

Fig, l. Linear generalized oscillating circuit with

If x, is excluded from system (
equation with regard to x,. A scalar eq
in an analogous way. These are equatio

d2x .,dx I(4) fi:. EA\# + a,(t)x = a, 
i

I

where I

I

f rr- | t
A substitution of variable in (4) by x ="*pl - i J",(.+laS lf ri"tOt

L Z6 I J
I

'' -\ n n/-\ /-\ I ,, -t tl ArQ)1* + P(t)Y = g, P(t) =' ur(t)- qullt)-iTdr"-,
Given the assumptions that in (4) x= 4, then 

I

(s)
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drc
dt2

I

I

t:

P(t) =

In the

v

p(t) 
=

Equation (3) can be reduced to a vector equation a canonical type
analogous to (5) by carrying out the following substitu

x = z*r{} i[, ,to *,,,@ptr]

/1
1" = B(t)z, where
dl

We obtain

(6)

canonical charact
her simple form,

z = colon( 2,, 
" r); 

B(t) = {o o(il, i , j =

1

br, = -bz, = *(u,, - arr)i b,, = a12;b21

The condition that ir,r=o is indicative of t
equation (6). In the case under consideration it is in a

If we introduce a Hamiltonian function, i.e, squ re form ofthe s
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H(t,2,,"r) =lau(t)"| - b,,(t)2,2, -l,o,r(,

Equation (6) can be written in the form of'the f ng system

oz, -0t

Let us compare the canonical system (6) with the ation sf a general

type (3). It is evident that the elements of the second dia I of the
matrix are identical, while the elements of the main diagon
are presented in an extended form:

differ. They

(7)

(8) 02., AH
, ôI ozt

4r = -too!,o*,
R*u

L- -too=u(o - ,!),u,,

R"o,'=-P'Grr,r= Wf
Hence the conclusion that the necessarv and suffici

the oscillating circuit to be described by a canonical equati
t condition for
is

Rro, = -P'Gror'

It is obvious that any conservative oscillating ci (R=0, G=0)
is described by a canonical vector differential equation.

It is not difficult to verify that if a Hamiltonian
scribed by equation (8), the coefficients of the first deriv
value equal to zero, since

ins circuit is de-
has an average

) by using the cir-

u' -- !,n' o' u, =ftnc .

Let us express the Hamiltonian function of system

cuit parameters
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l

(e)

zl+zl z?+z?
-;-- 

I Z rz, . 

- 

to obtain the following bilateral estimate

of
be

for

(11

t
(10)

)

Asa
(G=0,R=

ons

(4),
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solution of the equationz, and zrareunkno*n. fh. in (9) i
serious impediment to such an estimate. That nequal

when analyzing the canonical system it is importqht to identiff the r

negative condition, H(t,z,,zr)20, for allvalue which



is a symmetrical matrix of the Hamiltonian function (9).

Since 7-t -- -f , equation (l l) can also be written in

an integral system of equations, If, for instance, x(t) = lx 11( ), ii =r,z is a

fundamental system of solutions to (3), it will satisfo the inte equation

x(t) ="(r.) * Ja(s)x(s)as,
ti

where 
"(ro) 

ir the matrix of the initial conditions.

This forrn of the oscillating circuit equation is convent when using
a solution in thethe successive appnoximations metlrod, in the case of seeking

form of x(t\ ="(t)* Z*rQ\, where
k=l

x0 = x(/0) .

This recurrent formula allows of consistently identif,ing series terms in

(r2)

the solution. It would not he difficult to show that this series is

convergent over an arbitrary finite interval.
Further on we shall demonstrate a, multistage

the equation will assume the form

t4"=Hz.
dt

Sometimes it is convenient to present the initial system

form

3) in the form of

ly and evenly

ion approach.

6'l

*oQ)= Ja(s)x*-,(s
tn



(t4)

Let us continue the transformation bv
tution in (14)

fit =c(t)y,

c(t)=(i,,u, ^^,, ?;l?), c,,=u,,*(

A comparsion between (14) and (3) shows tbat
oscillating circuit with constant capacitance or
other respeotive parapeters vary in tirrre.

ion(14)
inductance, whi

the following

an

all

(15)

one ofthe

Finally, if we bary out the following substi in equation (15)

68

, = " "*o{i' yr,, (o * r,(r)l*}

The result is

d
1z = D(tlz .dt

where D(t) =(i' ru 
^^n ?'!),r,r,), 

d,,(t) = iG,

Obviously (15) is a simplified canonical system,
elements is oonstant.

z(t) = n(t)u(t), r(r) = [i"t' ;) *, shalr obtain

(16) = *r(t\u . M(t) =(o ,.,, :



where r(t) = at2a2t + dll

System (16,f describes an oscillating circuit without ,ofr.r. which con-
tains one time-dependenr! reactance.

_dd,,
dt

re ume-cependenf reactance. 
I

The system (16) is much simpler than the initial system @;, and the solu-
'both eouations are related in the ,llowins wav: Itions of both equations are related in the --,llowing way:

(t 7) x(t) = *(t,to)N(t)u ,

where *(t,to)= *o{}if*,t"1 + a,,(r).+
l' ,, L

The investigation of the free processes in linear oscillating circuits wittl
time dependent parameters of a general type is connected lwith enormous
mathematical difficulties conditioned by the general characterlof the problem.
Indeed, it is necessary to examine a huge number of equations (3) characterizedIndeed, it is necessary to examine a huge number of equations (3; characterized

functions - the elements of the rnatrix aij , ij =1,2 
|

The canonical systems lend themselves to a sufficiently a( and clear
by four functions - the elements of the rnatrix a,, , ij =1,2.

classification by boundedness or boundlessness of their solutioirs. The possible
canonical systems make up a set that can be visualized as a s$t of points in a
three-dimensional cylindric space. The cylindric space breaks into a set of
alternating areas of, stability and instability. Certain investigalions have been
carried out and they have yielded a sufficiently com picture of the

parameters.

Classification of the free processes
in Hamiltonian oscillating circuits

The canonical syste
tinct and clear classification by boundedn
It is possible to create a comprehensive

ur,(r)
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erning the free processes in a linear oscill
the sake of visualflzation we shall use a t
broken down into a set of alternating area

Consider a canonical svstem wi
vector form

d(18) A" =

The fundamental matrix of the
given the initial conditions z (0) =^I; wh

(re) z(t) =

The nrnnerrtiec nf fha mqfrinea iThe properties of the matrices i
a),(f ) is a real matrix-function

P( /) or antiperiodic, PQ+f1:-p1t), T - per

i.e. it exists almost everwhere and is sum

b) DetP(/): I ,

c) K is a real square matrix wit
The investigation of the propert

in the stability analysis. If the matrix
known, matrix rK will be determined in

(20)

matrix K.

Let us dwell more elaborately on matrix sets

sake of visualization we shall use geometrical terms.

K==
TItt* z(r)1.

r

4

r'I
The alternative sign in (20) is chosen in such a lway as to secure a real

ana {z(r)} r

l. Structure of the set {K}

We shall present the set of various
matrices rK with zero spur in the following form j

constant



tem O xyz. This presentation yields an ordinary (Euclidean) space.

space.A completely defined matrix Kcorresponds to each point in
The characteristic equation of the matrix,

(2t) Det(rK- X/) = 6

band hyperboloid illustrated the same at imaginary (D)

The graphic representation of the single-band

Fig. 24 where a = ?u and b = )t are the real semi-axes and c l= /, is the

rmagnary semr-axls.

hasthefollowingform:1"2= x'+ y,-zt. 
i

Given a real f , this characteristic equation represent{ a single-band
L.^- E- ll----:---f - |perboloid, whose canonical equation is in the followine formf

*' ,y' "'-, I,,, +:T- ^-, =l'/;l;/;

umference

Hyperbc

x

Fig. 2. Single-band hyperboloid illustrated the characteristic equation of the ma{rix at a real (a); double-

hy-

ln

z
Circ

t --\
I

vta
Y

a

If I is imaginary, (21) determine

*.+EE
The graphic representation of the

I

I

I

i

I



Fig.2b,where a= rt and b- 1L areimaginarysemi-axps,and c=1" isareal
semi-axis.

When l,=0 , theresultisaborderlinecaseof {cone: x2 +y2 - 22
separating the two farnilies of the abov
ally, we shall ascribe a plus sign to the
sign to their bottoms. The set of the poi
C" and C- respectively. The set of
(xz + y' < z') will be denoted as O(O
points ( x2 + y' > z' ) will be designated as .1L 

]

It turns out that systems (18) with periodic or anti$eriodic solutions cor-
respond to the set O (those are systems

with unbounded solutions are in congru
surface points of the double-band hype

The three-dimensional space co

(o -B\t = s[p 
o' )S 

' = BS/S-I (feto;,(c)

where .9is a real matrix, 2,,, e and p are real numbers,

It follows frorn equation ,S-leK'^g = ej-'(s that:

(-x, 0 \
-when KeH-e*'=Sl" -r, lS-'\o e "'/

- when K ec- 
"", = "(l iJr '
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I

- when K eO - e{' =5"4rt5-t = S(/cospr +,Isin

Hence, in case (a) both solutions of the fundamental (18) are un-

bounded, if the whole time axis is taken into account / e (- oo, ). ftne object

of consideration is the semi-axis / e[0,*), one of the solu of the funda-

mental system shoutd be regarded as unbounded (exponenti increasing), and

the other one as bounded (exponentially decreasing).

ln case (b) one solution under irritial conditions z,(0

odic or anti-periodic, while the other one - under initial condi

is linearly increasing. In case (c) all solutions are bounded'

Let us once again refer to formula (20) and consider issue ofthe

signal-valuedness of the matiix K.
Fot' tlre sake of simplifying the presentation, we shall the

fotfowing denotations: KT:y, 4T)=n. Then equation (20)

following form:

eY =!.8'

)s

(22\

As a result of a relevant transformation the matrix

to one of tlre following forms:

(a') p>0, F+1,

be reduced

,-(:(b')

(a
\B(c')

-ÎJ



If the matrix + B can be reduced to tbrm (a,) oJ (b,), there is a solution
onlyintheca umbersofmatrilx *.8 arepositive.The
sign in (22) is condition ur *eit. This is tire only solu-
tion and it is wing formulae: j

In case (a')

(23)

(24> h(ta)=tB-1.

lf B = t.f , we arrive at the solution by applyingl the formula:

(2s) h(r r) - msars (z = o,tr]t 2,t..),

where n is an even number when a prus sign is ascribed {nd a negative number
when a minus sign is attributed. 

]

When * B canbe reduced to form (c') and A + [.t, all values tn(t a)
are yielded by the formula 1

(26\ ln(ta)=ffir-(p* m)cteer

(a = 0,+1,+2,1...)

where e*io are the characteristic numbers of the matrix iA(O . g < n); z is an
even number when a plus sign is ascribed and a negative nlrmber when the sign isminus. 

I

It follows from (22) that Det ev - sspt - 1, Spl,=0 i.e. all solutions y
of equation (22)fallin space R3. f

For matrices y and + B itis po rsible to have simlltaneous occurence of
either cases (a) and (a'), or cases (b) and (b'), or cases ( c]; ana (c,). so, we can
conclude that in the case of unbounded increase in the sol{tion, i.e. (a,) and (b,).

l_
matrix f = ;[t z(T)l has a singte vatue and f e n Ub. tJC-
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In the case of a bounded solution (c') the matrix Kis {rot a single-valued

one. There are two options here: a non-trivial one, when Kl,eO, and a trivial

one, for K=O(in the second option the matrix degrades to ajzero one).

Let us use fo* and f[ to denote the top and bottom pf the hyperboloid

r ) , Tt2 ^, l,
*' + y' - 22 = -fu; O{ and Orto designate respectir4ely the upper and

I

lower area between the cone: *' + y' - 22 = 0 and this hV{erboloid; Oi and

I

Of to mark respectively the areas between the top and the blottom of the cone:

1"-

x'+y'-22 =0 andthehyperboloid: x2 +y'-"'=-ft;
rl

If we take into account the fact that the matrix f(f)l tras a single value

determined by the matrix r( in (19), it is obvious that in ordpr to ensure a one-

value functional matrix of solutions (19) it would be necessafy and sufficient to
select the matrix K falling in the area. 

i

i

2. Structure of set {Z(r)}

We shall use @, to denote the set of secpnd-order matrices

with constant real elements and with a determinant equal to pne. Let us assume

that x is a matrix belonging to this set. It can always be presfnted in the form

(27) x = alb,

where a is a vector corresponding to the first column of th{ matrix, and 6 is a

vector corresponding to the second column of the matrix. T[re elements of ma-

(a. 4)
trix x areexpressedthrough theprojections ofvectort aan{ b.x =l -," I .

I r" D')

The angle between the vectors is established accordirlr8 to the formula:

(u, b\
cI, = arccos'luln= arccos

It turns out that the detenninant of the matrix x canlbe presented in the
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Let us exarnine solution (19) of the canonical systfm of two equations.
Given a fixed d the matrix z(t) is an erement of the set @r]; in the case of chang-Given a fixed d the matrix z(t) is an erement of the set @r]; in the case of chang-
ing time this matrix is continuously converted from onr.f.rr.,.nt (matrix) of the
set @, , into another element of the same set, i.e. a trajecto[y is described in @" ,

which can be visualrized as a curve situated within a torus tfie. f l. We are, inter_

form

(28) Det x=lall6lsina=1.

Fig. 3 Visualization of tlie solution as a curve situated within a torus

ested in the normalized matrix of the so

jectory is an unit matrix, and the final

I

l

l

I

1

Fig. 3 can be treated in another way as well. Let usjconsider a section of
the torus with plane z= 0.Theresult is

this circuit corresponds to a constant v

Fig' 3 shows one of the solutions 4t ), corresponding to jttre initiat condition
rr)

"'=[0,/ . I istheangleofrotationofthevectorx(/)fortfretimeinterval[0,r).

The angle.of rotation over the time span of one period f i... fo. the inrterval

ft,t =Il, is of particular interest. I

It follows from (19) that z(T)
As a result of the condition that

val of A,t = T the vector z(/) turns at a
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(20;7 Qr = flTt, (n = 0,+1,+2,...)t \ll - vr!Lr:-)'.', 
i

where a is an even number for a periodic matrix P(t) andanjodd number for an

anti-periodic matrix. We have to point
conditions, i.e. two arbitrary vector sol
cal system rotate in synchronism so th
changed. Hence, n in (29) is a system c
quite an important characteristic from the viewpoint of the ptability theory.

Formula (29) allows of classify
values of a. Indeed, each particular can
matrix z(t), hence its own matrix as

revolutions .arover an interval A/ =
canonical systenl under consideration. 

i

Let us carry out a qualitative examination of the be$aviour of the solu-
tions of canonical systems. Let us assume that there is a canpnical system

(30) *r" = A(t)2, SpA(t) = s.

We shall consider the set ,D, which is made up of 
.triads 

of periodic

piecewise continuous functions (elements of matrix ,q@) arr('|,arr(t),ar,(t). We

introduce the followins norm in .f",

J[l u,, {r)l*t a,,(t)1+1 a,,(t)1pt

Then ^C is transformed into a complete linear normafized space (Banach

space). 
i

Each ma.trix ,4 has its corresponding matrix functiof z(r) which. in its

turn, is juxtaposed to a couple of matrices f(t),f where f{t) eO,C) is metric

space, K e H LIC U Oi The conespondence intlicated ab{ve is written in the
I

following way: 
i

We use o

C = C* UoUC'-

uoi)
to de of the coo tem in R3. Then

. We f) into a set of subspaces,

77



O = I O, , and introduce the following designation!:

Hn=clnxH, ci* =clnEc*,
Oo=QoxO1*, C'- =t2,lC-,
Cn=(2,,xC, C'i,'=e,NO

I

The product of the sets slrould be seen in the follovf ing way: A(t) e H ,,
it n(t) e{2, K eH.

The following denotations are used:

u= 0 H,,,0= (1 0,,,c= 0 c,,c'* = 0 cj,c"o =',()U cl,c' =c*UC-,
tt=4 n=4

The fundararental matrices z(t) related to the clnonical systems be-rne rulqaffrenlat mautces z\t) relateo to tne cpnonlcal sy

longing to different areas of stability have dift'erent reprbsentations:

(l'o),

(0. u .;J ,

A(t) eC'* + z(t) = P1

78

A(t) eH -+ z(t)=rtOs[i I ")" 
,

Ao eo + z(t)= P(,)s[:"jfj
-sinBr

cos Br

.(r
a"Io

)', ]

tr) l

, )t\
l

The open connected sets O, are referred to as st[bility (boundedness)

areas, the open linked sets ^E1, are res

are the boundaries between the areas o
themselves are referred to the unstable
that of the growing unbounded solutio

Let us consider the issue of the c

tant for applied prohlems. The matrix
can be viewed as a trajectory in torus
sponding matrix function. Therefore on



H'#?;11iiil:ilT U6i f#li,H$i:J:;
e, set {z(r)} should be arranged inisuch a way as to

form a space analogous to tpu"" E for matrix {a(l)} . It shoqld also be shown

that the corresponrC ence l() +> z(t)isreciprocaliy.ontinuolrr. Seeking to ar-

range set {z(r)} , we introduce the following intervals: 
i

o(2,,2,)= supll 
",(t) - zr(t)ll Jfu*p,@ - r,Ollllat .

o<tsT o

Then set {"(t)l 6ike I ror {a(r)}) becomes a coniplete linear nor-

malized space. These two spaces can be treated as identical aqd denoted in the

same way - as t. The tlependence of the matrix functions z'(t)on the matrix

-a(r) is continuous. Moreoverthere is observance of this contin{ity both by norln
and by interval. 

i

As shown above, the points on
trices with a determinant equalto one)
K'represent matrices with a trace equa
single value it would be sufficient to select such points for mitrices K that lie

between the upper and lower bottom of the two-banfl hyperboloid:
+L) a 1 tuz' - x' - y' = ;* , and to include one of the two boundaries in this part of

space R3. The bottoms of the two-band cone: *t + y' - "'')are 
situated be-

tween the bottoms of this hyperboloid. The space between tlpe cone bottoms
corresponds to the unstable area. The space between the respQctive bottoms of
the cone and the hyperboloid corresponds to the stable area. T]he surface of the
cone is the boundarv between the stable area and the unstable one. but it is

unstable area. Any point belonginglto torus @, , i.e.
th constant parameters zcan alway$ be presented in
way the stable and unstable areas, vVhich are already

determined by matrix K, can be trans
shown that the matrix function z(f)
@, , and the number of windings for a

canonical system is in the z-th stable or
the end of the winding at the close of in
,ll^+^-^- f*^* +L^ 4ag-a .,^-{r- ^^ i- +L^distance from the torus center as in the ucgrrrrurrg ur rrc urrcr vpl. lll Lutr u.lstr ul
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instability, the end of the winding proves to be further aqay from the torus center

than its beginning. Let us replace the torus containing f ]winOings *itn f ia.n-
LL

tical tori, each containing one winding of the solution. et us cut each torus at

one and the same place along its section

different direction along axis z (the re

togetlrer the section ends of the different

and obtain the cornplete solution- Thus, i
n

with ; windings. By deforming the spiral area directly onf can obtain a cylindrical

spaceivhose sectiott is shown in Fig.4. The space itself cair be obtained by rotating
the figure round the hatch-dotted line.

The cylindric space ,It3 encompasses various cano]nical systems. ,A particu-
lar case of suclr systems is, for instance, Mathieru's equatior{ (the dotted line in Fig. 4

indicates the area c;orresponding to Mathieu's equation).

1'
C:

Fig. 4. Three-dimensional cylindrical space the points ofwhich represenl the set ofcanonical
equations of the secorid order

Conclusion

C.,

The systems of linear differential pquations with periodic
coefficients can not be solved in a general form. This is rlhy the qualitative meth-
ods for solving those equations are of s

necessary the initial system of equations
ate form. lt turns out to be that for di
simple form of the equations" are quite
sible to find such form of equations al
Herewith the resonable areas of applyi
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discussed. It has been demonstrated that the system of equations, describing an oscil-
lating system, can be transformed using variables substituting, in fhe form, character-

istic for the Hamiltonian systems. A qualitative picture of the free processes in an

oscillatirrg system with periodic in time parameters has been prdsented on the basis

of the rnathematical theory of the Hanrilt
payed to the problenr of stability accordi
mensional cylindrical space has been pu

describing every possible oscillating sys

has been divided into accounting areas,

unstability of the canonical syslems. A co
rarneters is set in corresponderrce to the e
allows to make a methoclologically consis
with periodical parameters in accordance with the most importani indication, nantely

the stability and unstability according to Lyapunov's propoundi{gs.
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X.aqecrseu aHaJILI3 Ha cBo6oAHHTB upoqecl{ B

o6o6uleH JrI{HeeH rpenrflIrl Kpbr p nep[oAuqHl,t

uapaMerpr.r.

ypaBHeHlrt
I. Crpyrrypa Ha HUIdaJIHY,ITe

r,r KJrac[0r{KaII}It Ha BOOOAHI{TE

npoqecu B xaMr,uIToHoBI,I rrlr4 KpsroBe

Huronart Euprcr, Bnagu*rup

ypaBHeHHt c
sauo oco6eHo

3HaqeHhe npn4o6u nar KaqecrBeHHTe MeroAH sa HtcreAsaue. 3a E HEOOXOAHMO

H3xoAHara cucreMa an$epeuuuaJrHH ypaBHeHur Aa ce KbM HAB.

noAxoArqara Qoprrra. B cralnsra ce o6ctxAar o6lactu na
ypaBHel-IHt.npHJro)KeHHe Ha eAHa HJrH !,pyra tfoprtra Ha cucreMara

6 8l



Pasrae4aH e o6o6uleu rpenrcr.u Kpbr, cbAbp)Karq
peaKrHBHr{ (C n L) r aKrHBHlr erreMeHrr{ (R u @. flox
auQepenqualHr ypauneHur, ont,lceaula o6o6rqerur
3aMtHa Ha npoMeHJlr{BHTe Aa Oe npHBeAe K5M Br{A,
cr{creMn. HgnorssaftKrl MareMarHqecrara reopnr Ha

AaAeHa KaqecrBeHa KaprnHaua ceo6oAHnre npoqecn B

HBl4 BbB BpeMeTO

ce, qe cuoTeMaTa
Kpsr', MOXe qpe3

sa Xa[,rHrroHoBr{Te

c[cTeMn, e

Kprn c nepHoAuqHH
BbB BpeMsro napaM€npu. Oco6eno BHl,tMaHue e orAeneHo Ha saycrofiuurocr
no Jhnyuon..Ha unoxecrBoro ypaBHeHar Ha TpenTf,rqn KpbroBe c
fiepnoAHr{Hfi napaMeTpl4 e nOcTaBeHo B csOTBeTCTBHe IIHIHH,4pHrrHO
npocrpaHcrro. Tosa npocrpaHcrBo e pae6uro na MHOXECTBO ObJIACTH,
csorBercrBarqfi na o6lacrare Ha ycrofiuaaocr r,rl ueycrofivuBocr Ha
KaHoHHgHr,ITe cncreMri. Ha scrKa roq
cboTBeTCTBne KoHKpeTeH Kpbr c ne
no3BoJrrBa Aa ce HanpaBH MeTOAOIOT
Tpenrrrrlr,tre KpblroBe no Hafi-sax
ueycrofi vr,ruocrra no JknyHoe.
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