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Introduction

The analysis of linear oscillating systen!zs with variable pa-
rameters, and particularly of such with parameters that remain periodical in
time, is of fundamental importance for the investigation of oé_cillating systems in
a general form [1]. The parameters of nonlinear oscillating lsystems depend on
the voltage applied and on the currents that flow through them, and these, in
their turn, are functions of time. Thus, in the long run, noplinear systems are
also systems with variable parameters, In this connection al principle of linear
linkage is formulated in mathematics [2]. It is related to the idea that the phe-
nomena and properties of nonlinear systems can be realized (ih the sense of simu-
lated) for each specific (particular) case in the respective lineair systems with vari-
able parameters.

Qualitative analysis assumes considerable importanise in the investiga-

I An investigation supported by the Bulgarian National Fund “Scientific I:{cscarch” ynder
Ne TH-549/95. '
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tion of complex oscillating systems, since it allows of identifying the most gen-
eral features of system behaviour. ?
The paper reveals a general method for analyzing linear systems with peri-
odic and almost periodic parameters. -
The generalized linear oscillating circuit (Fig. 1) with periodic parametersj is
called so forth to play an important part in the theory of nonlinear osciilatidlns
and in radiophysics. Its direct significance is that it is used in radiophysics as a
signal oscillating circuit parametric amplifier or generator, in the process of és—
cillation moduiation in generator systems, etc. Its indirect significance is condi-
tioned by the fact that it is a heuristic model of nonlinear autonomous and non-
autonomous second-order systems employed in the analysis of process stability
in such systems. : l
The paper provides an analysis of the free processes in an oscillating circuit
from the peint of view of their bounded or unbounded nature, or, in other words,
it studies issues of the stability and instability of the oscillating circuit. The diffi-
culty of the task is predeterminated by its most general set-up, which requires
the application of complex mathematical techniques. Yet such a general per-
spective of the task makes it interesting from a practical point of view, since the
parametric oscillating circuit is quite rich in particular cases, but principle no
specific particular case can reveal the overall diversity of possibilites for the os-
cillating circuit, '
Further down we have quoted a basic system of two linear differential equa-
tions of the generalized parametric oscillating circuit, as well as some particular
cases derived from the basic system through variable substitution. The attention
is mostly focused on the canonical second-order system, to which the basic Sys-
tem of circuit equations is rc.:*.ced. ' !
Mathieu’s equation is equivalent to a rather particular case of a canonli-
cal system with periodic coefficients. It is well-known that Mathieu’s various
equations can be classified within a definite set of classes by zones of stabili}y
and instability. These zones can be presented in a two-dimensional plane as ar-
eas with sufficiently complex form which intertwine and overlap in a complex
way. It turns out that the canonical systems of a general type have analogotlks
properties but the respective stability and instability areas are fixed in cylindricgl
space obtained by rotating the plane round an axis lying in this plane. The re-
spective results are obtained by employing incomparably more complex meth-
ods than in the case of Mathieu’s equation and a broader system of mathemat
cal concepts.
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Structure of the differential equatlons
describing linear oscillating systepls
with positive parameters

Linear oscillating circuits can be described by applying a
first-order vector linear differential equation

d
() Ez:A(r)z+f(r),

where z is a ~dimensional vector, whose elements can represerjt capacitor charges,
magnetic flux running through inductances, etc. A(#) is a n x »n -dimensional
matrix whose elements can be expressed by circuit paramete{'s (inductances, ca-
pacitances, resistances), £{#) is a free n-dimensional vector, rwhose components
are determined by the electromotive forces connected to the; circuit and by the
parameters of the system.

In order to identify the structure of equation (1), we shall |nitially analyze the
following equation of the free processes with “frozen” (time-independent) pa-
rameters:

d
— A
(2) o X = Ax,

where A = const. If all the parameters of the system are positi]lre, the solution will
satisfy the condition: lim X(l‘) 0.

It is obvious that the !atter equatlon meets the condition that ISpA'<0 {SpA is the

sunt total of the main diagonal terms of matrix A). i

Lemma 1. Any radiophysical system with constant positive param-
eters, containing active resistances with currents flowing th;rough them, is de-
scribed by a system of differential equations with constant ¢oefﬁcients whose
matrix includes non-positive main diagonal elements, at Iea,st one of which is
negative. i
Lemma 2. The main diagonal in the matrix of tl1e first-order vector
differential equation of a radio circuit with constant positive parameters, con-
taining only real reactances (with losses), consists only of negative elements.

The condition that Sp.A<Q and the following Lemma are valid for circuits
made up of ideal reactances with constant positive parameters. |

Lemma 3. The matrix of the vector differential equatﬁon of a radio circuit
containing only ideal reactances with constant positive parameters has a zero main
diagonal.
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The Lemmas formulated above are also valid for a certain subclassllof
linear radio circuits {we shall term it a structurally stationary one) with variable
positive parameters. They are characterized by the fact that matrix A4 in (2) co
tains no derivatives of the circuit parameters with respect to the time. The f -
lowing theorem can be formulated in this connection.

Theorem 1. Any radio circuit with variable parameters containing no
capacitive loops or inductive nodes are structurally stationary.

The proof of Theorem | is based on Kirchhoff’s laws. It demonstraJes
that the derivatives of the circuit parameters with respect to time emerge onlly
after excluding one of the charges in a capacitive loop, or one of the magnetic
fluxes in an inductive node. |

With a view to extending the scope of action of the Lemmas on structur-
ally stationary circuits considered above, the latter can be reformulated as sepia-
rate theorems. ‘

Two connected oscillating circuits with intrinsic capacitive coupling can
serve as an example off a structurally stationary circuit. Two connected oscillat-
ing circuits with external capaclt:ve coupling cannot be regarded as a structulr-
ally stationary circuit, since in this case the three capacitances form a capacntlve
loop. !

Vector differential equation describing |
a linear oscillating circuit with

time-dependent parameters

The free process in a linear generalized oscillating circuit
with changing parameters (Fig. 1) is described by a linear vector differential equa-
tion

d
3 ~x = Alt
(3) X = Alx,
( _9g : | . i
X = colon Xw"z), X = — normalized charge of the capacitor , XS
13 ’ ;
00

normalized magnetic flux of the inductance, A(t)= {a,j(t)}, iLj= I,é,
i

o) Vgt i €
() = —tyy ol <0,4 a,(t) = qu(w) 0,"“2;“)* ®,.C() >0
t, R(2)

() = -2 <0,

L(¢)
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Fig. |. Linear generalized oscillating circuit with changing parameters
If x, is excluded from system (3), the result will be a scalar differential

equation with regard to x,. A scalar equation with respect to x, can be obtained
in an analogous way. These are equations of the type

d2

@) ot al(r)- +a,(0x =0,

where
- in the case of x = x,,a,(t)...::lnL(f) + oo gg; ﬁg]
b [t%Tff)] ., t{E‘C(;:)t);l k) + L(t)C( )[”R(')G(')]

- in the case of x = Xx;, respectively a(f) = %ln C(¢) + tw[% g%ﬂ

2({)___“[1'001?(:)]4_:{,, R(¢) 4. ) +—"n

o) |70 @ 1+ GORE)].

L(r)C( )

1 t
A substitution of variable in (4) by x = epr:— 3 fa (.Jr)dsJ ¥ yields
! <

®) drz

1
+Pt)y =0, Plt)=a(r) -—-af(r) 3__
Given the assumptions that in (4) x= x,, then i
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L) |ty 7| G(S)  R(S)
Y =0=5T0) exp{— J[‘CT(E)" m]ds }

£ R 1(t.G R
P(t) =% (1+ RG) + Id(t"“G 59“_] +—(L-~’“0—Ji1nf, |

2'dtN—C¢ L 2% L /dt
34 ] 1t W)z 1 ac
HZ g DO e o Ry, et

In the case of x = x, in (4), it follows that
_ . _x |C@ R(s) | GLS)
Y =EYa=X; C(O) exp{ J.I:L(S) C(S) }dt}

nC |

ld(t.R t.G\ 1(t.R £.G)d
Pt m’1 __(00 _&_] _[_oo____w_J
O A G R - by e i
l[im 0)2 _l[#—‘u"R +_touGJ2 _ldc¢
dt 4\ L C 20 dt* °

|
Equation (3) can be reduced to a vector equation of a canonical type i
analogous to {5) by carrying out the following substitution: |

x:zexp{ ]a,l(t )+ a,{t)dt }

o

We obtain

d |
= oy Is o [
(6) =7 B(t)z , where

z = colon(z,, 2, ), B(t) = {b,(0)}. 1,/ =1 |

1 .
by ==~b, = 5(3:1 _322)§ by = a0, = ay

The condition that SpB(#)=0 is indicative of the canonical characte
equation (6). In the case under consideration it is in a rather simple form.

r of

If we introduce a Hamiltonian function, i.e. square form of the system

. ;
\
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(7 H(z‘, zi,.zz) =

R |-

_ 1
b, ()2} - b,(t)z,2, - -2-b,2(r)232 :
Equation (6) can be written in the form of the following system

(8) azi I 6H 323 T 3H )

ot oz, Ot oz

Let us compare the canonical system (6) with the equation of a general
type (3). It is evident that the elements of the second diagonal of the
matrix are identical, while the elements of the main diagonals differ. They
are presented in an extended form:

[L()
Reqv B —p chvip e . C(I) .

Hence the conclusion that the necessary and sufficient condition for
the oscillating circuit to be described by a canonical equation is

R, = -p*G,,
It is obvious that any conservative oscillating circuit (R =0, G=0)
is described by a canonical vector differential equation.
It is not difficult to verify that if a Hamiltonian oscillating circuit is de-
scribed by equation (8), the coefficients of the first derivative has an average
value equal to zero, since

d d
a, =~&;ln£, or & =ElnC.

Let us express the Hamiltonian functien of system (8} by using the cir-
cuit parameters



R
Lo | Qoo > p 00 2

©) H(frznzz)fz_ 0,00 T Jie ot g%

When analyzing the canonical system it is important to identify the non-

" negative condition, & (t &525 ) 2 0, for all values of the arguments, for which *he

solution of the equation z, and z,are unknown. The bracketed middle term in (9 aLs a
serious impediment to such an estimate. That is why we use the ineguality

zi+z;] zl+ 2]

S S22, < —~—2—‘ to obtain the following bilateral estimate

f 1 Rl|| ¢q D
10 D ——ba-= L0 52 E stHt, :
va 2 ( 2“)0 pD[(DooC T +‘I00L = ( z”z-)

I q @ ]
<l w_ 2 0 2|
2[ 2Pe- D((D AT LT

As a result off these inequalities, in the absence of any dissipative losses
(G =0,R=0), the following equation is obtained

t D
H(r zlzz)——&[q)qwc 2+~*-9'i—z§J.
ﬂu

This is the normalized instantaneous energy accumulated in the reactances
of the oscillating circuit. Canonical systems and their equivalent equations can
be either stable or unstable, but they cannot be asymptotically stable.

Let us consider some other forms of the canonical vector system (4),
for example the following one:

e ) ne(y )
(11) Ez=ﬂlz, f—[_l 0> H= b, b
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o, ©C(2) 2 1 c(n) _m
"4 fw _c_"_{f_)._, ﬂ.{_). Loy Py ‘
2 'C{!) L{I} QUuL{l‘]

H is a symmetrical matrix of the Hamiltonian function (9}.
Since 7! = 7 ,equation (11) can also be written in the form

d
— = H
{(12) fdrz b

Sometimes it is convenient to present the initial system (3} in the form of

an integral system of equations. If, for instance, X(t) = {Xy(f)} , Lj=1,2isa

fundamental system of solutions to {3), it will satisfy the integral equation

x(t) = x(l‘a) + IA(S )x(S)ds,
where x(to) is the matrix of the initial conditions.

This form of the oscillating circuit equation is convenient when using
the successive approximations method, in the case of seeking a solution in the

form of x(¢} = X(fg) + ZXk(f) , where x,(f)= IA(S)X‘,_I(S)dS, k=1.2,..,
k=1

£

x, = x(t, ).
This recurrent formula allows of consistently identifying all series terms in
the solution. It would not be difficult to show that this series is absolutely and evenly

convergent over an arbitrary finite interval.
Further on we shall demonstrate a multistage transformation approach.

If the variables in (3) are substituted in the following way

L) PO

(13) x=B({)y, B()= gﬂ(r)
1

the equation will assume the form
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d
(14) —y=C(t)y,

dt
e =0 SO, G (L) L

A comparsion between (14) and (3) shows that equation{14) describes an
oscillating circuit with constant capacitance or constant inductance, while all
other respective parameters vary in time.

Let us continue the transformation by performing the following substi-
tution in {14)

ek |
y= zexp{g ﬂc”(s)w(snds}.
The result is

d
(15) Et-z=D(t)z,

wers D(f){f“") 2 (1) f)(t)) dy(6) = [ Bt dj?'}

Obviously (15} is a snmphf ted canonical system, since one of the malu ix
elements is constant. |
Finally, if we carry out the following substitution in equation (15) |

2(8) = R, R(t)=[;f.;(r) 1

we shall obtai
0) al mn

0 |
(16) %U =M@, M= [r( 9 0) |
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dd
where r{r) = a,2, +dj) -— .

System (16) describes an oscillating circuit without IoLses, which con-
tains one time-dependent reactance. I

The system (16} is much simpler than the initial system iS), and the solu-
tions of both equations are related in the following way: '

(17) x(6) = k{t,¢,)N()U
1 day(1) 1
where k{z,t,) = exp ~2-J a, (1) +a,(1}+ Tk ol de e,
6, N
L[ g Ld_] 1
N(t) =| 2a, e o dt an
1 0

The investigation of the free processes in linear oscillating circuits with
time dependent parameters of a general type is connected with enormous
mathematical difficulties conditioned by the general character|of the problem.
Indeed, it is necessary to examine a huge number of equations (3) characterized
by four functions - the elements of the matrix 2;, ;7/=1,2.

‘The canonical systems lend themselves to a sufficiently a¢curate and clear
classification by boundedness or boundlessness of their solutiops. The possible
canonical systems make up a set that can be visualized as a s¢t of points in a
three-dimensional cylindric space. The cylindric space breaks down into a set of
alternating areas of stability and instability. Certain investigations have been
carried out and they have yielded a sufficiently comprehensive picture of the
general properties of the free processes in a linear oscillating circuit with periodic
parameters,

Classification of the free processes
in Hamiltonman oscillating circuits

The canonicai systems lend themselves to a sufficiently dis-

tinct and clear classification by boundedness or boundlessness of theirsolutions.
It is possible to create a comprehensive picture of the general regularities gov-
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erning the free processes in a linear oscillating circuit with periodic parameters. For
the sake of visualization we shall use a three-dimensional cylindric space which is
broken down into a set of alternating areas of stability and instability.

Consider a canonical system with periodic coefficients in the following
vector form

18 i = JH:

The fundamental matrix of the solutions of the vector equation (18),
given the initial conditions z (0) =/ where / is a unit matrix, is presented as

(19) z{t) = P(t)e".

The properties of the matrices in (19) are as follows:
a)At) is a real matrix-function, which is either periodic, i.e. A#++T) =

d
P(#) or antiperiodic, P(t++T)=-P{t), T-period, P(0)=/, 7 P is piece - wise continius,

i.e. it exists almost everwhere and is summable;

b) DetP(=1 , .

¢} K is a real square matrix with constant elements, SpX = 0.

The investigation of the properties of matrix X is of crucial importance
in the stability analysis. If the matrix function of the vector equation (18) is
known, matrix K will be determined in the following way:

(20) = %ln[i 2(1)]. f

The alternative sign in (20) is chosen in such a way as to secure a real
matrix K,

Let us dwell more elaborately on matrix sets {1{} and {P(r)} ; Fonjé the

sake of visualization we shall use geometrical terms.

|
|
L. Structure of the set {K } |

We shall present the set of various constant second-order
matrices K with zero spur in the following form 5

-X y=-z |
Kis
(_y+z X J

where x, y, z are various values along the axes of the Cartesian coordinate sys-
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tem Qxyz. This presentation yields an ordinary three-dimensional {Euclidean) space.
A completely defined matrix K corresponds to each point in this space. :
The characteristic equation of the matrix,

21) Det(K-Al)=0
has the following form; A2= x2+ y?- z2, i
Given a real ) , this characteristic equation represent{ a single-band hy-
perboloid, whose canonical equation is in the following formi. '
2 2 2 .
N A |
/SRy TR ¢

Hyperbola

2 b
Fig. 2. Single-band hyperboloid illustrated the characteristic equation of the mafrix at a real { a); double-
band hyperboloid illustrated the same at imaginary {5

The graphic representation of the single-band hyperboloid is shown in
Fig. 2a, where 2= A and b =2 are the real semi-axes and ¢|= jA is the
imaginary semi-axis.

If } is imaginary, {21) determines a double-band hyperboloid:

The graphic representation of the double-band hyperboloid is given in
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Fig. 25, where a= jh and b= jA areimaginary semi-axes, and ¢ = A is a real
semi-axis. 1

When A =0 | the result is a borderline case of 4 cone: X° + }’2 = z?
separating the two families of the above mentioned hyperboloids. Convention-
aily, we shall ascribe a plus sign to the cone and hyperboloid tops, and a minus
sign to their bottoms. The set of the points on the cone surface will be denoted as
C* and C” respectively. The set of the points in the interior of the cone
(x* + y? < z?) will be denoted as O(O+ and O') while that of the exterior
points { x2 + y?* > z?) will be designated as H.

It turns out that systems (18) with periodic or antiperiodic solutions cor-
respond to the set O (those are systems with bounded solutions), while systems
with unbounded solutions are in congruence with the set /. We shall denote the
surface points of the double-band hyperboloid family as 1”(I‘+ and F').

The three-dimensional space constructed in this way will be designated
as R:.

The elucidation of the structure of the matrices K and e* is of particu-
lar significance for the stability investigation of the canonical systems.

The matrix K can be presented in one of the following forms:

(v Y,
(a) K=5o _,)5" (et
(0 ) .
(b) K = 5\0 0 S (set C),
0 - -1
© K=Sp o )5 =psis” @),

where Sis a real matrix, A, ¢ and [ are real numbers.

It follows from equation §™'eX'§ = %5 that:

o

Kr M 0 S'I
-when KeH-¢ =SO ey :

1 gt}
-when K eC.e* =S[0 . JS"',
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_when K €0- ¢ = Se®S™ = (I cospt+Jsinpe)S™.

Hence, in case {a) both solutions of the fundamental system (18) are un-
bounded, if the whole time axis is taken into account ¢ e(—o0,00}. If the object

of consideration i the semi-axis ¢ ¢[0,c0), one of the solutions of the funda-

mental system should be regarded as unbounded (exponentially increasing), and
the other one as bounded (exponentially decreasing).

0
In case (b) one solution under initial conditions Z, (0) = S(l] is peri-
odic or anti-periodic, while the other one - under initial conditions 22(0) = S [ OJ -

is linearly increasing. In case (c) all solutions are bounded.

Let us once again refer to formula (20) and consider the issue of the
signal-valuedness of the matrix K.

For the sake of simplifying the presentation, we shall introduce the
following denotations: K7=y, (T )=B. Then equation {20) takes the
following form: '

(22) e’ =%B-

As a result of a relevant transformation the matrix + B can be reduced
to one of the following forms:

n 0
(a’) 1] >0, p=l,
_ . I
01
(b') I+ 0 0)’
Oy 54
(") B o £ OZZ-IB‘:I
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If the matrix + B can be reduced to form (a’} or (b'), there is a solution
only in the case when the characteristic numbers of matrix + B are positive. The
sign in (22) is chosen on the basis of this condition as well. This is the only solu-
tion and it is obtained by using the following formulae:

In case (a’) :

Zulnp[ ¥+l )

=In(tB)="5—|+B- I

23) y =In(t B) e s
In case (b’)

24) In{+B)=+B-7.

If B =1I, we arrive at the solution by applying the formula:

25 In(t /)= mS'JS (n= 0,21,42,%...),

where zis an even number when a plus sign is ascribed and a negative number
when a minus sign is attributed. ;

When £ B can be reduced to form {¢’) and B = j&_-{ .all values In{+ B)
are yielded by the formula '

+ im

Sk -
(26) In(t B) = P B (fP + M)ctgcp I

(n=02122,%.)

where ¢** are the characteristic numbers of the matrix !B(O <@ < n); s an

even number when a plus sign is ascribed and a negative nitmber when the sign is
minus, '

It follows from (22) that Det ¢” =% =1, Sp_}=0i.e. all solutions y

of equation (22) fall in space R®.

For matrices y and % B it is possible to have simultaneous occurence of
either cases (a) and (a’), or cases (b) and {b'), or cases { ¢’} and {c’). So, we can
conclude that in the case of unbounded increase in the solytion, i.e. (a’) and (b’},

1 '
matrix K:F[i Z(T)] has a single value and X e HUC* UC~
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In the case of a bounded solution (¢') the matrix Xis pota single-valued
one. There are two options here: a non-trivial one, when KieO ,and a trivial
one, for K=0({in the second option the matrix degrades to 4/ZEro one).

Letususe [; and [, to denote the top and bottom of the hyperboloid
2 I
i o

Xtyt-zt= ~ar’ O; and O to designate respectively the upper and
|

[ower area between the cone: x° + y? — z° = 0 and this hy;’rerboloid; O] and

O] to mark respectively the areas between the top and the biottom of the cone:
12
) )
x?+ y* - 22 =0 and the hyperboloid: x°* + y* -z’ = -—}!5;
If we take into account the fact that the matrix P(¢)| has a single value
determined by the matrix K in (19), it is obvious that in ordgr to ensure a one-
value functional matrix of solutions (19} it would be necessafy and sufficient to

select the matrix K falling in the area. !
2. Structure of set {P(I)}

We shall use @, to denote the set of secpnd-order matrices

with constant real elements and with a determinant equal to one. Let us assume
that x is a matrix belonging to this set, It can always be presented in the form

(¢4) x=ab,

where a is a vector corresponding to the first column of the: matrix, and &is a
vector corresponding to the second column of the matrix. The elements of ma-

a, b,
trix x are expressed through the projections of vectors 2 anqi bx= ( g bA) :

a
. e
The angle between the vectors is established according to the formula:
-

(3, b) ab, +ab,

Ol = arccos- b = arecos ¢
i) a2 +a2 )62 +22)

It turns out that the determinant of the matrix x can be presented in the
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form
(28) Det x =& blsina =1,

Let us examine solution (19) of the canonical systgm of two equations.
Given a fixed ¢, the matrix z{¢) is an element of the set ®,; in the case of chang-
ing time this matrix is continuously converted from one element {(matrix) of the
set @, , mto another element of the same set, i.e. a trajecto';ry is describedin @, ,

which can be visualized as a curve situated within a torus (Fig. 3). We are inter-
ested in the normatized matrix of the solutions when the initial point of the tra-

jectory is an unit matrix, and the final one is the matrix z(¢).

Fig. 3 Visualization of the solution as a curve situated within a torus

Fig. 3 can be treated in another way as well. Let us'consider a section of

the torus with plane z= 0. The result is a circuit in the plane Oxy. Each point on
: X
this circuit corresponds to a constant vector 2 = y) Hence it is obvious that

Fig. 3 shows one of the solutions ¢ ), corresponding to the initial condition
1 :
£y = o) @ is the angle of rotation of the vector x(¢) for the time interval [0,.

The angle of rotation over the time span of one period T; i.e. for the interval

[¢,£ = T]. s of particular interest.
It follows from (19) that z{T") = P(T)a, a is a constant vector.
As a result of the condition that P(¢+T') = +P(¢) , over the time inter-

val of Af =T the vector %¢) turns at an angle divisible by & ,i.e.
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(29) o, =m, {n=0%£1,£2,..)

where s an even number for a periodic matrix P(¢) and aniodd number for an

anti-periodic matrix. We have to point out that 2 does not depend on the initial
conditions, i.e. two arbitrary vector solutions belonging to the relevant canoni-
cal system rotate in synchronism so that the angle between them remains un-
changed. Hence, i in (29) is a system characteristic. Moreover, it proves to be
quite an important characteristic from the viewpoint of the fswbility theory.
Formula (29) allows of classifying canonical systems according to the
values of n. Indeed, each particular canonical system is characterized by its own
matrix z (¢ ), hence its own matrix as well, determining the number of semi-

revolutions z1_over an interval Af =7 for an arbitrary vector-solution of the

cancnical system under consideration,
Let us carry out a qualitative examination of the behav1our of the solu-
tions of canonical systems. Let us assume that thereis a canomcal system

d
(30) 323 Aln)z, SpA(s)=0.

We shall consider the set L, which is made up of triads of periodic

piecewise continuous functions (elements of matrix A(9) a,,(f), a,(¢), a,,(1). We

introduce the following norm in L’
Fa
_[[' 3:1(f)|+! 312(t)|+|321 (f)”df
0

Then [’ is transformed into a complete linear normallized space (Banach
space). ;

Each matrix A has its corresponding matrix funetioh z(#) which, in its
turn, is juxtaposed to a couple of matrices P(¢), K where P(t) €, is metric

space, X € HJCUJO; The correspondence indicated abolve is written in the
following way: _ |

r'=0x(HUCUO;).
We use o to denote the beginning of the coordinate system in &*. Then

C =C*"UJoelUC . We break down space €2 into a countable set of subspaces,
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Q= ZQH , and introduce the following designations:

-

H,=Q xH, EREe e
0,=Q,%x0;, CimQuxCy

Cn =Qn 2 C-‘ C:*O = Qﬂ kO

The product of the sets should be seen in the following way: A(r) eH,,
if P(t) eQ, KeH.

The following denotations are used:

H=U H,0=U0,C=UC,C*=UC,C°=CC =C"Uc,
H=—0 il fj=—in f=—u fi=—
The fundamental matrices z(¢) related to the canonical systems be-
longing to different areas of stability have different representations:

Alt)eH » z(t) = P(r)S[g;u 2*’*‘) s (A>0),

Alt) €0 - z{r) = p(:)s(“’SB‘ 'SinB‘Js-l (o<p <L),

sinf3¢ cosPt

Al eC™ 5 2{r) = P(r)SG) iﬂ)s

The open connected sets O, are referred to as st:pbiiity (boundedness)

areas, the open linked sets A, are respectively termed areas of instability, C,

are the boundaries between the areas of stability and instability (the boundaries
themselves are referred to the unstable area, in accordance with another law -
that of the growing unbounded solutions).

Let us consider the issue of the composition of space 15 , Which is impor-
tant for applied problems. The matrix function of the fundamental system (19)
can be viewed as a trajectory in torus @, . Each canonical system has its corre-
sponding matrix function. Therefore one intuitively arrives at the assertion that
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the set of Hamiltonian systems (30), or the set of matrices {A'(t)} which is the
same, has a corresponding set of matrix functions {z{#}}. Fc'fr the purpose of
proving this correspondence, set {z(t)} should be arranged in such a way as to
form a space analogous to space L for matrix {A({)} . It should alsc be shown
that the correspondence A{t} «» z(r} is reciprocally continuoys. Seeking to ar-
range set {z{(z)}, we introduce the following intervals: :

p(zl,zz) = sup|| z,(#) — z, ()]} + ?j.ll'%[‘?;(f) g zz(tj]"dr R

Os¢sT

Then set {z(r)} (like L’ for {A(t)}) becomes a comjplete linear nor-
malized space. These two spaces can be treated as identical and denoted in the

same way - as L. The dependence of the matrix functions z{¢)on the matrix

Al¢) is continuous. Moreover there is observance of thig continyity both by norm

and by interval.

As shown above, the points on torus ®, are unimodular matrices (ma-
trices with a determinant equal to one). The points in the space R’ for matrices
K represent matrices with a trace equal to zero. For the purpose of achieving a
single value it would be sufficient to select such points for mﬁ\triccs K that lie

between the upper and lower bottom of the two-band hyperboleid:

2

z2-x* -y and to include one of the two boundaries in this part of
I

"
T A7 _ i
space R’. The bottoms of the two-band cone: x* + y* = 22,. are situated be-
tween the bottoms of this hyperboloid. The space between the cone bottoms
corresponds to the unstable area. The space between the respective bottoms of
the cone and the hyperboloid corresponds to the stable area. Thhe surface of the
cone is the boundary between the stable area and the unstable one, but it is
treated as belonging to the unstable area. Any point belongingjto torus ®, , i.e.
any unimodular matrix with constant parameters zcan always be presented in
the form: z = +e* In this way the stable and unstable areas, which are already
determined by matrix X, can be transferred to torus @, . It has already been
shown that the matrix function 2{¢} of system (30) “winds” round the torus
®, , and the number of windings for a time interval of A¢ =T is — (when the
canonical system is in the n-th stable or unstable range). In the case of stability,
the end of the winding at the close of interval [r,r = T] proves to be at the same

distance from the torus center as in the beginning of the interval. In the case of
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instability, the end of the winding proves to be further away from the torus center
n

1
than its beginning. Let us replace the torus containing *2— windings with 7 iden-

tical tori, each containing one winding of the solution. Let us cut each torus at
one and the same place along its section and then shift the ends of the section in
different direction along axis z (the result is a spiral winding). Then we stick

together the section ends of the different tori so as to link up the solution windings

n
and obtain the complete solution. Thus, instead of = tori, the result is a spiral area

2

with g windings. By deforming the spiral area directly one can obtain a cylindrical
space whose section is shown in Fig, 4. The space itself cap be obtained by rotating
the figure round the hatch-dotted line.

The cylindric space R encompasses various canonical systems. A particu-
tar case of such systems is, for instance, Mathiew’s equation (the dotted line in Fig. 4
indicates the area corresponding to Mathieu’s equation).

c

CR A

Fig. 4. Three-dimensienal cylindrical space the points of which represent the set of canonical
equations of the second order

Conclusion

The systems of linear differential equations with periodic
coefficients can not be solved in a general form. This is why the qualitative meth-
ods for solving those equations are of special interest. With that end in view it is
necessary the initial system of equations to be transformed to the most appropri-
ate form. It turns out to be that for different purposes of the analysis “the most
simple form of the equations” are quite different in different cases. It is not pos-
sible to find such form of equations allowing to tackle them in a general form.
Herewith the resonable areas of applying different form of equations have been
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discussed. it has been demonstrated that the system of equations, describing an oscil-
lating system, can be transformed using variables substituting, in the form, character-
istic for the Hami'tonian systems. A qualitative picture of the {ree processes in an
oscillating system with periodic in time parameters hias been presented on the basis
of the mathematical theory of the Hamiltonian systems. Special attention has been
payed to the problem of stability according to Lyapunov’s statements. A three-di-
mensional cylindrical space has been put in correspondancet the set of equations
describing every possible oscillating systems with periodic parameters. The space
has been divided into accounting areas, corresponding to the areas of stability and
unstability of the cancnical systems. A concrete oscillating system with periodic pa-
rameters is set in correspondence to the every point of this space. Such an approach
allows to make a methodologically consistent classification of the oscillating circuits
with periodical parameters in accordance with the most important indication, namely
the stability and unstability according to Lyapunov’s propoundings.

References

LAkybdonruy, BA,BM C7apxunck ¥ il Jindcinbe aufkpepentinancisic YpaBReHAA €
NEPHOMHHECKEMH kodtppLutenTamy 1 ux npuaokenus, M., Hayrxa, 1987,
2 Buaon BO®. PO Bunorpan AM MFpadsan. BB Hewms nxu i Teopus noxa-

suvenest JIRIyHORD ¥ CE NpHAOKEHNR K gOlpovaM yerofiusocty. M., Hayka. 1986,

Received 17,1V, 1996

KauecTBeH aHanu3 Ha CBOOOJHUTE IIPOLIECH B
06001IEH JIMHEEH TPEOTAl KPbI' ¢ IMEPHOAMYUHHU
napamerpd. 1. CTpykTypa Ha JNMQEpEHLHaTHNTE
ypaBHEHHs ¥ KiacHbUKaLus Ha CBOOOAHUTE

IIpoueCH B XaMUITOHOBH TPENTALIKW KPEIroBC

Huxonar Baprox, Bragumup Jlamros
(Peswome)

Cucremure auHelHM AudepeHUHATHW ypaBHeHHs C
NepMoAHYHM KOS(GULMEHTH HE ce pelsaBaT B obLl BUA, €TO 3awc 0cobeHo
3HAYEHYE TIPUAOBHBAT KAUECTBEHIUTE METOAM 38 H3ceaBaHe. 3a LienTa € Heobx0aMMO
W3XOAHATA CHCTeMa AubepeHUMaNHy ypaBHeHHs Aa ce npeobpasysa Kbm Hai-
noaxoaamata dopma. B craTuaTa ce ofchxaar uenecbobpasHure obnactu Ha
NpURMKEHNE Ha eAHa Wik Apyra (hopma Ha crueTeMaTa AU(ePeHLIHANHH YPaBHEHHS.
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Pasrienan e 0606uieH TPENTALL KPBL, CHABPKALL MPOMEHIMUBY BhE BPEMETO
peakthBuu {1 L) w aktusHu enementd (R u G). Ilokasea ce, uye cucremaTa
AM(EpeHUHATHH YPABHEHUS, ONHCBalla 0GoBILeHNS TpenTALY KPBI, MOXE upes
3aMfAHA HA NPOMEH/IMBKTE A3 CE TNPHBEAe KbM BUJ, XapaKTepeH 33 XaMUNTOHORUTE
cucremi. Hanonseafikn MaTematnueckata Teopus Ha XaMHUITOHOBUTE CHCTEMU, €
JafeHa KaYeCTBEHA KapTHHA Ha CBODOIHMTE MPOLIECH B TPENTAIL KPbI C NEPHOAUYHH
BB BpeMETO napameTpH. OcofeHo BHUMaHHE € OTAESHO Ha 3/124aTa 3a YCTONUHBOCT
no Jlanywos.- Ha MHOMXECTBOTO ypaBHEHHS Ha BCEBB3MOXKHM TPENTALIM KPBroBe ¢
ACPHOAMYHN NMapaMeTPH € MOCTABEHO B CHOTBETCTBHE TPUMEPHO UMIMHADHYHO
NPOCTPAHCTBO. TOB2 MPOCTPaHCTBO € pa3buUTo Ha GPOMMO MHOXKECTBO obnacTH,
CbOTBETCTBAMIA #ia 00JAaCTHTE HAa YCTOHYMBOCT H| HEYCTOHYMBOST Ha
KaHOHHYHATES cHcreMu. Ha Besaka Touka OT TOBA MPOCTPAaHCTBO Ce MOCTAaBs B
CBOTBETCTBHE KOHKPETEH KPBr ¢ nepuHoAMuHW napamerpu. Takne noaxon
NO3BO/IABA 42 CC¢ HAMPABH METOACAOTHHYECKH U3bpiKAaHA KAacH(puUKalus Ha
TPEeNTALIWTE KPBHroBe MO Hak-BaXHUA NPHU3IHAK - yCTOWYMBOCTTA WM
HEYCTOH4YHBOCTTa e JIAnyHOB.
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